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Gravity-Mediated Modifications of the Dispersion
Relation in Nontrivial Backgrounds

Daniel Arteaga,’* Renaud Parentani,> and Enric Verdaguer?

Radiative corrections evaluated in nontrivial backgrounds lead to dispersion relations
which effectively break the local Lorentz symmetry even if Lorentz invariance holds
at a fundamental level. We report on progress made toward the calculation of radiative
corrections which are induced by gravity. These should be relevant when approach-
ing Planck scale. We first present the properties of the self-energy of a scalar particle
traveling in a thermal graviton bath. We then discuss the possibility of performing the
corresponding calculation in a curved background. We give the connection between two
different approaches to the dispersion relation, based on the self-energy and the effec-
tive action, and we emphasize the need for the closed-time-path formalism in curved
backgrounds.
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1. INTRODUCTION

The possibility of Lorentz-breaking-dispersion relations has recently received
much attention. On the one hand, the possible observation of ultrahigh energetic
cosmic rays beyond the Greisen—Zatsepin—Kuzmin (GZK) cutoff (Takeda et al.,
1998) has lead some authors to speculate about the modified dispersion relations
in order to account for this observation (Amelino-Camelia and Piran, 2001a,b;
Kifune, 1999). These modified dispersion relations have been mainly motivated
by several approaches to quantum gravity and string theory, which suggest that
Lorentz symmetry could be broken at a fundamental level (Alfaro et al., 2000,
2002; Corroll et al., 2001; Kostelecky and Samuel, 1989). Several authors (Carroll
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et al., 1990; Jacobson et al., 2003a,b, 2004; Kostelecky and Mewes, 2001) have
studied the limits on the possible amount of Lorentz violation from the current
astrophysical observational data.

On the other hand, modified dispersion relations have also been considered
in the context of the trans-Planckian problem which appears both in black hole
physics and in inflationary cosmology. In black hole physics, the quanta respon-
sible for Hawking radiation at late times correspond to vacuum fluctuations of
arbitrarily high energy near the black hole horizon (Jacobson, 1991, 1993, 1999).
Similarly in inflationary cosmology, modes at the origin of the large-scale struc-
tures had length scales much smaller than the Planck length in the early stages
of inflation. It is therefore of interest to determine to what extent the properties
of Hawking radiation (Brout et al., 1995; Corley and Jacobson, 1996; Helfer,
2003; Unruh, 1995) and those of the primordial fluctuation spectrum (Martin and
Brandenberger, 2001, 2003; Niemeyer, 2001; Niemeyer and Parentani, 2001) are
sensitive to modifications of the dispersion relation at the Planck scale.

Many approaches to the issue the modification of the dispersion relation rely
on the assumption that Lorentz symmetry could be broken at a fundamental level.
However, even if the Lorentz group is taken to be a symmetry of the underlying
fundamental theory, quantum gravity effects might introduce nontrivial dispersion
relations in black hole physics and in cosmology. A dynamical realization of this
line of thought was pursued in Parentani (2001, 2002), following ’t Hooft (1996)
observation that strong gravitational interactions in the near horizon region might
alter the semiclassical description of black hole evaporation.

In fact it is well known that quantum effects evaluated in nontrival back-
grounds may induce an effective breaking of the local Lorentz invariance.’ In the
case of QED, Adler (1971) already recognized that photons propagating under
the presence of a strong magnetic field would propagate at speeds smaller than c,
thereby effectively breaking the local Lorentz symmetry.

Drummond and Hathrell (1980) realized that electromagnetic quantum cor-
rections in curved spacetimes would also alter the characteristics of propagation
of photons. They computed the modification to the speed of light of low-energy
photons propagating in curved space-times, and found the surprising result that
in many physical situations light would travel at speeds greater than c. Shore
(2002a,b) generalized the Drummond and Hathrell result in order to include high-
energy photons and to account for dispersion. He found that the prediction of
superluminal photon velocity was apparently exact to all frequencies. We refer

3 To avoid confusion, let us emphasize that we do not claim tht the Lorentz symmetry of the full theory
is broken. What we mean is that radiative corrections to self-energies evaluated in thermal heat baths
or in curved backgrounds contain terms which depend on quantities such as vector fields or tensors,
and not only on the metric evaluated in the tangent plane, as it is the case in the vacuum in Minkowski
space-time.
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to Shore (2003) for a review of this topic and a discussion of the implications
concerning causality.

Similarly, in the presence of a thermal QED heat bath the effective speed
of the photons is lowered (Tarrach, 1983) and the fermion dispersion relation is
modified (Donoghue et al., 1985). Finally we can also mention that Scharnhorst
(1990) and Barton (1990) worked out the propagation of light between two Casimir
plates and found that the speed of light was increased.

Most calculations considering effective modifications of the dispersion rela-
tion involve the electromagnetic interaction. However, at energies approaching the
Planck scale (and hence relevant for the situations concerning the trans-Planckian
problem) gravitational interaction should dominate. Since our primary concern
is the trans-Planckian problem it is worth studying the gravity-mediated correc-
tions of self-energies. Additionally note that gravity is universal and not limited
to charged particles. Although matter coupled to gravity is a nonrenormalizable
theory, low-energy predictions which do not depend on the Planck scale behav-
ior of gravity can be extracted in the spirit of effective field theories (Donoghue,
1994a,b; Weinberg, 1995).

A first step to study gravity-induced modifications of the dispersion rela-
tion was undertaken in a recent paper (Arteaga et al., 2004). In that reference the
Lorentz-breaking modifications of the dispersion relation of a scalar particle inter-
acting with a thermal graviton bath were extracted from the poles of the retarded
propagator. However, since this procedure requires the notion of momentum space,
it is not clear how to generalize it to curved spacetimes. In fact Drummond and
Hathrell (1980) used a different approach: they computed the effective QED action
in a curved spacetime, and from that they derived the effective equations of motion
for the photon. The dispersion relation was then recovered through a geometric
optics approximation.

In this paper we further consider modified dispersion relations arising from
gravitational interactions. We discuss the possibility of computing the corrections
in a curved spacetime. In particular, we point out the connection between the
self-energy and the effective action, and compare the dispersion relations obtained
from the effective action and from the self-energy, stressing the importance of a
closed-time-path (CTP) formalism in curved spacetime.

For completeness let us mention that, working in the context of brane world
scenarios, Burgess et al. (2002) considered the gravity-mediated modifications of
the dispersion relation of brane-bound fermions and photons. In their case the
primary source of Lorentz-violation were some extradimensional configurations.
Let us also mention that Borgman and Ford (2003) considered the fluctuations of a
bundle of geodesics in a flat thermal spacetime, considering the backreaction of the
scalar field on the metric perturbations. However their approach was semiclassical.
To consistently incorporate backreaction effects at the leading order in our quantum
theoretical framework we should work in the large N limit and consider the dressed



734 Arteaga, Parentani, and Verdaguer

graviton propagator obtained either from field theory (Tomboulis, 1977) or from
stochastic gravity (Hu and Verdaguer, 2003, 2004; Martin and Verdaguer, 2000).

The plan of the paper is the following. In Section 2 the propagation of a scalar
field in a graviton background is studied, summarizing the main results of Arteaga
et al. (2004). In Section 3 we report on some work in progress concerning the
propagation in generally curved backgrounds. Finally, in Section 4 we analyze
the connection between the self-energy and the effective action methods for the
derivation and study of the modified dispersion relations.

We use a system of units with 7 = ¢ = kg = 1. The signature of the metric
is(—, +, +, +).

2. THERMAL FLAT BACKGROUND

In this section we consider the propagation of a scalar particle in a thermal
bath. Our aim is to determine how gravitational radiative corrections modify the
dispersion relation of the particle. For this we shall compute the corrections to the
self-energy.

2.1. The System

Let us consider a minimally coupled real scalar field ¢ of mass m which
propagates in a spacetime characterized by a metric g, . The action for the field is

1 1
Spg == / d“x\/—g<5g‘” 0, dvp + 5m2¢2>, (1a)
and the action for the metric is

2
Se = —2/d4xa/—gR. (1b)

K
where k = /32 G = /32w Ly, is the gravitational coupling constant. Assuming
that the metric is a small perturbation of Minkowski spacetime, g,, = v + Khyy,

the action § = Sy , + S, can be decomposed into the free scalar field, graviton,
and interaction actions, S = Sy + Sj + Sint, as

1 1

Sy = /d4x< -3 3P p— 5m%bz), (2a)
1

Sp = f d4x< = 5 0N By + O 0y — Bk O R

1
+5 9"h a,m) + 0(K), (2b)
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K ,
Sim = 5 / d*xT" hy, + Ok, (20)
where h = hlj is the trace of the perturbation and

1 1
Ty = 9 0§ = S 0 9 — Enwm%z 3)

is the stress tensor of the scalar field. Indices are raised and lowered with the
background metric 7, .

Since gravitational interactions are non-renormalizable, the system of the
scalar field coupled to gravity should be conceived as an effective field theory
(Donoghue, 1994a,b; Weinberg, 1995). To compute to a given precision E"«”",
where E is the energy of the process, one has to introduce all possible counterterms
compatible with the symmetry whose coefficients are of order «”" at most. In
practice this implies that to order «2, additionally to the well-known mass and
field strength counterterms, one has to add a four-derivative counterterm:

Scount = — / d4x|:%(m(2) - m2)¢2 + %(Z — 1)(8M¢ 8/"¢ + m2¢2)

1
+ZKZCU CH a”¢>2] + 0(ch). )

The coefficients m, Z, and Cy correspond to unobservable bare quantities. Ad-
ditionally the graviton action Eq. (2b) must be supplemented with a gauge-fixing
term. No Fadeev—Popov ghost fields are needed since we do not consider graviton
self-interaction.

2.2. Zero Temperature Self-Energy

At zero temperature the self-energy =7 =%(p?) is defined through
—i

G(T=0) — ,
o) 2+ m? + ST=0(p2)

(&)

where G;T:O)( p) is the zero temperature Feynman propagator of the scalar field.
We recall that the self-energy can be computed as the sum of all one-particle
irreducible diagrams with amputated external legs (Peskin and Schroeder, 1998;
Weinberg, 1995). The two diagrams which may contribute to order x2 are shown
in Fig. 1. Additionally, one must also take into account the contribution of the
counterterms:

E(T:O)(pz) _ (m% i m2) +(Z - 1)(p2 + m2) + K2C0p4

+ 270N + 2707 + 06ch). (©)
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p—k k
p k p p p
Fig. 1. The two Feynman diagrams needed for the calculation
of the self-energy, respectively X1y(p) and X2)(p).

The relevant contribution comes from the first diagram, since the second diagram
is a massless tadpole, which automatically vanishes if we empoly dimensional
regularization. Once we include the contribution of the counterterms the renor-
malized self-energy is found to be (for the details of the calculation see Arteaga
etal.,2004):

2 6 4 2
=02y K (m o P
P =G\ T ) Itz e
2 2 2
K 4 22 p_tm” .
- m( 222 7
@) “( 2 ’6> @

+Ci*(p* +m*? + 0 (™).

The finite coefficient C corresponds to the unknown finite part of the four-derivative
counterterm. In principle its value should be determined by experiments or by the
knowledge of the underlying more fundamental theory. However in this particular
case there are no divergences associated to the p* term (see Arteaga et al., 2004),
so that it would have been consistent not to include the four-derivative counterterm
and simply take C = Cy = 0 from the beginning.

2.3. Finite Temperature Self-Energy

We incorporate the thermal effects into the self-energy through the real-time
description of thermal field theory (Das, 1997; Landsman and van Weert, 1987;
le Bellac, 1996), which can be seen as a particular application of the CTP method in
nonequilibrium field theory (Chou et al., 1985; Keldysh, 1965; Schwinger, 1961).

In the CTP approach, which can be applied for an arbitrary initial state p, the
number of degrees of freedom is doubled. One has to consider four propagators
organized in a 2 x 2 matrix G4(x, x’). The 11 and 22 components correspond
respectively to the Feynman (time-ordered) and Dyson (anti-time-ordered) prop-
agators, and the off-diagonal components correspond to the Wightman functions
(nonordered). The self-energy also becomes a matrix > (x, x"), defined through

Gap(x, x) = GY(x, x) + / d*y d*z2GOx, =iy, )]Gap(z, x)  (8)
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where GSL) (x, x”) are the propagators of the free theory. Perturbation theory can be
organized as usual, but taking into account that there will be two kinds of vertices
and four kinds of propagators. Fourier-tranformed propagators can be introduced
as follows (Chou et al., 1985):

Gun (9 X) = / dPA P Gy (X 4 AJ2 X — AJ), ©)

where we have introduced the new variables X* = (x* + x'*)/2 and A* = x* —
x"*. An analogous definition applies for the momentum representation of the self-
energy, ¢ (p; X). To simplify the notation we will drop the tilde when referring
to Fourier-transformed quantities.

An interesting combination is the retarded propagator Gr(p; X) =
G11(p; X) — G12(p; X): it exhibits simple analytical properties (analyticity in the
upper p°-plane), it is directly connected with the retarded self-energy g (p; X) =
Z12(p; X) 4+ 211(p; X) through

—i
P>+ m?+ IR (p; X)’

and, furthermore, at finite temperature the position locations of its poles have
well-defined interpretations in terms of energies and thermalization rates. It is
work emphasizing that Eq. (10) holds in a generic nonequilibrium situation, while
the more familiar relation Eq. (5) is specific of zero temperature field theory.

In the thermal case the initial density matrix is taken to be p = e ##/
Tr (e”fm ), and propagators do no longer depend on X in the momentum rep-
resentation, since the state is homogeneous. The free propagators GSZ (p) contain
the usual vacuum contribution plus a thermal on-shell part proportional to the
Bose—Einstein distribution function,

Gr(p; X) = (10)

1
efE —1°

n(E) = 1D
This last term accounts for the presence of real particles on the thermal bath and
breaks Lorentz invariance through the dependence in E, the zero component of
Dy evaluated in the rest frame of the heat bath. For more details we refer to the
aforementioned references and to Appendix C of Arteaga et al. (2004).

We study separately the real and imaginary parts of the retarded self-energy.
To compute the real part we have to evaluate both diagrams X(;)(p) and X2)(p),
shown in Fig. 1. In Arteaga et al. (2004) we show that at low temperatures the real
part of the self-energy it is given by

1 5T3 2 2 2
ReSg (Ep, p) = ——i?m?T? — 12| m 2L
P 6 83 \3m2 + 4|p|?

12)
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We have directly quoted the on-shell result (p° = E, = /p? + m?) since it is
the one we shall need afterwards for the dispersion relation. The first term on
the right-hand side of Eq. (12) is a constant contribution which comes from the
thermal real gravitons in the background. It is somewhat a surprise that this term
does not depend on the 3-momentum since the original integrals were not explicitly
Lorentz-invariant. It must be noted that a completely analogous situation happens
in electrodynamics (Donoghue et al., 1985). The second term on the right-hand
side of Eq. (12), which depends on the particle 3-momentum, comes from the
thermal scalar particles in the bath. Since there are almost no massive particles
at low temperatures, this second contribution is exponentially suppressed. This
damping disappears at high temperature, where there are many scalar particles in
the bath. In this regime one obtains

1 E 2E, + |p|
ReXg (Ep, p) = —k2m>T? [—11 +—P1n <"7>] , T>m. (13)
AR 48 ipl  \2E, — Ip|

In principle the imaginary part of the self-energy could be computed in a
similar way, or, alternatively, with the aid of the cutting rules at finite temperature.
In both cases, one finds a finite nonzero result. However, as we shall see in the
next subsection, to order x2 the imaginary part of the self-energy vanishes when
evaluated on-shell. It can be shown that the nonzero result comes from the infrared
divergence of the Bose—Einstein thermal factor. Once this infrared behavior is
regulated, for instance by giving a tiny mass to the graviton, no imaginary part is
found.

2.4. Dispersion Relation

At zero temperature, the position of the pole of the propagator gives the
energy of the state and hence defines the dispersion relation, according to the
Killen—Lehmann spectral representation (Peskin and Schroeder, 1998; Weinberg,
1995). In the present case it is found to be

(P"* =m* +Ip| + =0 (=m?) = m* + |pI%, (14)

where the second equality is a consequence of the on-shell renormalization scheme
(the renormalized mass m coincides with the physical mass of the particle). The
dispersion relation is clearly Lorentz-invariant, as expected.

At finite temperature, Donoghue ef al. (1985) showed that the “effective”
dispersion relation of the particle, given by the real part of the poles of the retarded
propagator, determines the intertial properties of the particle (see also Section 4 in
this paper). The real part of the poles is given by

(P°)* — |pI> = m* + Re Zr(p°, p). (15)
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The thermal mass is obtained by setting p = 0:

m% = m? + ReXg (mr, 0). (16)
In a Lorentz-invariant situation one would simply have (p°)? = m? + |p|*, but in
general there can be additional dependence on the 3-momentum p on the righthand

side,
(P"? = m% + |pl> + F(x, T, mr, p). 7

The Lorentz-breaking term in the dispersion relation leads to modifications of the
group velocity of the particles v = dp®/dp (Latorre et al., 1995):

p 1 oF

' p°  2p° ap

(18)
As shown in Section 4, if the initial state were an arbitrary non-equilibrium state
instead of a thermal one, the same analysis would apply, but in this case there
would be an explicit dependence on the position X in the self-energy.

Let us find the explicit form of the thermal mass and Lorentz-breaking terms
both in the low- and high-temperature regimes. Equation (15) can be solved per-
turbatively:

(P"?* = m* + |pI* + Re Zr(Ep, p) + O(x™), (19)

where we recall that E;, = /m? + |p|2. At low temperatures the modified disper-
sion relation, according to Egs. (12) and (19), is approximately given by

[T (1P
02 _ 2 2 2 |mMm p —m/T 20
(p ) mT + |p| K 2713 <3m2 +4|p|2) e ) ( )

where the leading contribution to the thermal mass is

1
m% =m?— g/czszz. 21

Notice that at low temperatures the Lorentz-breaking term carries a Boltzmann
factor e/, This is again due to fact that the non-trival momentum dependence
comes from the thermal scalar particles whose abundance is exponentially sup-
pressed at low temperatures. Analogously to what happens in electrodynamics
(Donoghue et al., 1985), the effect of the graviton bath only shows up in the
thermal mass.

At high temperature, T >> m, the modified dispersion relation, according to
Egs. (13) and (19), is

2272
02 2 ,  k'mT* | E, 2E, + |pl
= + —In|———— ) —1], 22
(P = m} + Il + [M n(2Ep—|pI 22)
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and the thermal mass is

11
mr =m? — Eczszz. (23)

The group velocity is given by

1 2T2 4 1 2T2 4 2F
V“%[IJF_ 2K mz 2__K 3m m( p+|p|>] reom
p 96 (4m= +3[p|9)Ipl> 96 [plPEp 2Ep — |pl
24)

At high temperature the terms which break the Lorentz symmetry are no longer
exponentially suppressed. Notice also that Eqs. (22) and (24) show that there is
no modification to the dispersion relation for massless scalars. Ultrarelativistic
massive particles do not show either significative deviations from the Lorentz-
symmetric dispersion relation.

While the real part of the self-energy gives the change in energy of the particle
and hence the dispersion relation, the imaginary part accounts for the dissipative
effects and gives the thermalization rate. In a generalization of the optical theorem
to finite temperature, the imaginary part of the self energy can be expressed as
the sum of all processes which contribute to the decay rate minus the sum of all
processes which contribute to the creation rate (Weldon, 1983). But to order k%a
real particle can neither emit nor absorb a real graviton, because there is no phase
space available for those processes. Hence, at this order, the imaginary part of the
self-energy must vanish on shell. To account for thermalization effects we should
compute the imaginary part of the self-energy to order k. At this order, the particle
can exchange momentum with the thermal bath through processes analogous to
Compton and Coulomb scattering in electrodynamics.

3. CURVED BACKGROUNDS

It is not immediate how to compute the dispersion relation of a particle in a
curved background following a method similar to the one described in the previous
section. Although the real-time approach to field theory may be understood as an
application of the CTP formalism, and this formalism is well suited for curved
spacetimes, the above procedure heavily relies on the the momentum representation
of the propagator, which is not defined in general in curved spacetimes. Therefore
the notion of dispersion relation is ambiguous in curved spacetimes.

However, when the length scales associated with the particle propagation are
much smaller than the characteristic curvature radius of the spacetime L, it should
be possible to approximately recover the notion of dispersion relation. Bunch and
Parker (1979) showed that, expanding in powers of the inverse curvature radius,
it was possible to define a perturbative momentum representation for the free



Modifications of the Dispersion Relation in Nontrivial Backgrounds 741

propagator (see also Birrell and Davies, 1982):
d4
GO (x, x') :/ p

Q2n)t
where x/, are the coordinates of the point x in a system of normal coordinates
centered around x’. The Fourier components are

—i i(3 —&)R()  2iRup(x")p*p?
P2+ m? (p? + m2)? 3(p? + m2)?
with & being the conformal coupling factor of the field. Depending on the inte-
gration contour for p° (or, alternatively, on the choice of the —ie terms for the
singularities), G” can represent the Feynman, the retarded, or any other propaga-
tor (evaluated in the local adiabatic vacuum). The above expansion is found to be
equivalent to the Schwinger-de Witt, or adiabatic, expansion of the propagator.

The normal coordinates appearing in the propagator have a natural interpre-
tation as the locally Minkowskian coordinates at the observation point. However
they limit the practical usefulness of the momentum representation as a tool for
computing the finite part of the Feynman diagrams in curved spacetimes, since
Feynman rules require integration over all spacetime. Moreover momentum would
be no longer conserved through the diagram, as can be seen from the explicit x’
dependence of Eq. (25b). Therefore it may prove more convenient to compute the
propagator with some coordinate representation and then eventually use a develop-
ment similar to that of Eq. (25b) to interpret the result. To compute the propagator
one may try to study some particular case with full generality, or, alternatively,
study a generic situation with an adiabatic or weak-field approximation. However,
it remains to be seen whether an expresion analogous to Eq. (25b) will continue to
hold for the dressed propagator. We can now explicitize what we mean by “radiative
corrections which break the local Lorentz invariance.” In the p, x" representation
of the dressed propagator, these terms would be scalars in the tangent x’-plane
which depend on some non-trivial tensor fields and which therefore cannot be
absorbed in a redefinition of the parameters which already exist in Eq. (25b), i.e.
the mass, the parameter £, and the normalization of residue of the pole.

Drummond and Hathrell (1980) followed a different procedure in order to
study the modified dispersion relations. We recall that they considered the correc-
tions to the photon propagation induced by electromagnetic interactions in curved
spacetimes. Instead of studying the location of the poles of the propagator, they
computed the photon-effective action, and from that they extracted the effective
equations of motion. Then, the effective action was evaluated under a weak-field ap-
proximation for gravity following two different equivalent methods: a Schwinger-
de Witt expansion and an independent diagrammatic technique. They also as-
sumed low frequencies, but this second assumption was later removed by Shore
(2002a,b). To derive the dispersion relation from the equations of motion they used

exp (ipuxs )G (p x), (252)

GO (p;x)= + 0L, (25b)
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a geometric optics approximation: they assumed that the solution was of the form
A(x) expli S(x)], with the phase S(x) varying much more rapidly than A(x). For the
free electromagnetic action this leads to k% = 0, with k,(x) = V,,S(x). When the
effective action is considered corrections to the usual dispersion relation are found.

The approach by Drummond and Hathrell has the advantage that it does
neither rely on the momentum representation nor on the study of the poles of the
propagator. We will see in the next section how this approach is connected to the
more usual pole analysis in flat spacetime.

Additionally, it is worth noticing that Drummond and Hathrell employed
the Feynman in-out formalism in their calculation. However in non-equilibrium
situations the effective equations of motion deduced from the in-out effective
action do not correspond in general to the equations of motion of the expectation
value of the field, but rather to the in-out transition elements (Jordan, 1986). To
get equations of motion for the true expectation value it is necessary to compute
the CTP effective action. We will study in the next section whether using the in-
out approach or the CTP formalism makes any difference in the Drummond and
Hathrell’s case.

4. SELF-ENERGY AND EFFECTIVE ACTION METHODS

In this section we shall compare the effective action and self-energy ap-
proaches to the dispersion relation. To this end we will study the equations of
motion derived from the CTP effective action in curved spacetimes (Calzetta and
Hu, 1987; Campos and Verdaguer, 1994, 1996; Chou et al., 1985; Jordan, 1986).
We will allow for an arbitrary initial state p.

The CTP effective action I'[¢1, ¢»] is defined from the Legendre transform
of the CTP generating functional, in a similar way as the usual in-out effective
action (which can be recovered by setting ¢, = 0) but taking into account the CTP
doubling of degrees of freedom. Functionally differentiating the CTP effective
action we get the effective equations of motion for the expectation value of the
field, ¢ = Tr(p¢):

§T[¢1, P2l

- =0. 26
3p1(x) (26)

P1=¢2=¢
These equations of motion are real and causal (Jordan, 1986) because they corre-

spond to equations of motion of true expectation values.
The effective action can always be expanded as

_ 1
Clé1, ¢2] = Z . f V=ged*xy -/ —g(x)d*x,

T () Xr)qgal (x1) - q}a’_(x].), 27
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where we have used an Einstein summation convention for repeated CTP indices
a;€e{1, 2}. The coefficients '“'""* (xy, .. ., x,) are called proper vertices. A straight-
forward generalization of the usual argument (see e.g. Peskin and Schroeder, 1998)
shows that this 2-point vertex corresponds to the inverse propagator,

M (x, y) =i(G H*(x, y). (28)

The equation which defines the self-energy ¢ (x, x”),

Gap(x,y) =G (x, y) —i / V=g d*z/—gw)d*w G (x, 2)

x Tz, w)Gep(w, ¥), (29)
can be manipulated to give
(G, y) = A™(x, y) +i 2P (x, ), (30)
where A%’ (x, y) is the inverse of the free propagator,

A®(x, y) = (G, y) = ¢ [=g()] (=07 + m*) D (x — y),
(31
with ¢® = diag(1, —1). We see that the 2-point vertex can be expressed as

I (x,y) =iA(x, y) — B(x, y). (32)

Hence the 2-point vertex essentially corresponds to the self-energy, which can be
computed as the sum of all one-particle irreducible (1PI) diagrams. Other proper
vertices also have similar interpretations in terms of 1PI diagrams.

Let us suppose now that the relevant vertex is the two-particle vertex I'*.
This hypothesis can be justified in many situations: tadpole contributions I'* vanish
with usual renormalization conditions, and if we are performing a leading order
calculation, n-particle vertices, with n > 3, are often of higher order in the coupling
constant (this is indeed the case of QED and gravity). In this case the effective
equations of motion can be expressed as

S_F _ 4./ 11 12 TN
= = | dyy=gW [ &, )+ T, »]e(y) =0, (33)
001 $1=6,=¢

which, taking into account Egs. (31) and (32) can be expanded as

(=0, +m?) $(x) + / d*y7/=g0) Sr(x, 1) $() = 0, (34)

where ¥gr(x, y) = > (x, y)+ > 12(x, y) is the retarded self-energy. The above
equation of motion is real, because the retarded self-energy is a purely real quantity
when expressed in configuration space (although it can develop an imaginary part
in momentum space).
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In flat spacetime the above equation is expressed as
(=0 +m*) p(x) + / d*x' T(x, 1) p(x') = 0, (35)

which, introducing the Fourier transform along the lines of Eq. (9), can be written
as

pr+m*+ I (p; X) =0, (36)

where we recall that X = (x + x")/2. Thus, in flat spacetime the self-energy and
effective action methods lead to the same result provided we use a CTP approach in
both situations and we neglect vertices with three external particles or more. Notice
that the equivalence between both methods extends to arbitrary non-equilibrium
situations, hence the X dependence in Eq. (36). In other words, Eq. (36) amounts
to finding the poles of the retarded propagator even in a nonequilibrium situation,
see Eq. (10).

In curved spacetime we cannot introduce the Fourier transform. However, we
still can expand the right-hand side of Eq. (34) as follows:

(—Ox +mD) )+ Y EM 1 (x) V-V, (x) = 0. (37

If the effective action is local, as in the case of Drummond and Hathrell, the above
expansion can be truncated. We can introduce the geometric optics approximation:
we suppose that the field is of the form ¢ = A(x)exp[iS(x)], with the phase S
varying much more rapidly than A. Then, the leading contribution to the equations
of motion can be written as

R m? 4 Y ER ok, -k, = 0, (38)

where k,(x) = V,S(x).

We thus see that the geometric optics approximation essentially corresponds
to the Fourier transform in flat spacetime. An expression analogous to Eq. (38),
but particularized to the case of a photon in QED, was obtained by Drummond
and Hathrell. However they used a conventional in-our approach instead of a CTP
approach. Let us analyze the differences. Within the in-out formalism, Eq. (34)
would read:

(=0 + m) $(x) + / d*yy/—50) =" (x, ) (y) = 0. (39)

Recall that now ¢ does not correspond in general to a true expectation value. In
fact, in general ¥ !'(x, y) will be a complex quantity, so that we cannot guarantee
that above equation of motion is real. The difference between the in-out and CTP
approaches comes from the mixed term % !2. In flat spacetime the mixed compo-
nents of the self-energy account for processes involving real particle production,
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and vanish whenever these processes do not happen. We can expect that a similar
interpretation holds in curved spacetime. The cases studied by Drummond and
Hathrell did not lead to any particle production, neither electromagnetically (be-
cause of the lack of phase space for real particle production in all e? diagrams) nor
gravitationally (since the creation of particles with energies much higher than the
inverse curvature radius is strongly suppressed within the adiabatic approach, see
Birrell and Davies, 1982). Hence, it is likely that their result is not significatively
modified by the consideration of the equations of motion of the true expectation
values. Nevertheless, we believe that this point still deserves a more careful anal-
ysis. For instance, when considering fields with small mass, particle production in
unavoidable. Therefore, in these cases, only Eq. (34) would lead to real equations
of motion.
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